Qubitek gazdag dinamikája

Kiss Tamás

Wigner Research Center for Physics

Collaboration: I. Jex, S. Vymětal, A. Gábris, M. Malachov (Prague) G. Alber, M. Torres, Zs. Bernád (Darmstadt) O. Kálmán, A. Gilyén, D. L. Tóth

2019 Október, Simonyi nap

Quantum theory: linear or nonlinear?

- 1., Closed systems unitary operators linear evolution
- 2., Quantum channels completely positive maps linear evolution

If quantum states evolved nonlinearly

- hard problems (NP complete) easily solved (in polynomial time)
 D. S. Abrams and S. Lloyd, PRL 81, 3992 (1998)
- e.g. search using the Gross-Pitaevskii equation

D. A. Meyer and T. G. Wong, New J. Phys. 15, 063014 (2013)

quick discrimination of nonorthogonal states - generic feature

A. M. Childs and J. Young, Phys. Rev. A, 93, 022314 (2016)

Nonlinear transformations by selective evolution

3., Measurements

- ✓ projection (von Neumann)
- ✓ probabilistic (Born)
- ✓ information gained
- information feed-back
- post-selection

f breaking linearity f

H. Bechmann-Pasquinucci et al. Phys. Lett. A 242, 198 (1998).

H. Bechmann-Pasquinucci et al. Phys. Lett. A 242, 198 (1998).

$$\left|\Psi^{\mathsf{in}}\right\rangle_{AB} = \left|\psi_{0}\right\rangle_{A} \otimes \left|\psi_{0}\right\rangle_{B} = \frac{1}{1+\left|z\right|^{2}} \left(\left|00\right\rangle + z\left|01\right\rangle + z\left|10\right\rangle + z^{2}\left|11\right\rangle\right)$$

H. Bechmann-Pasquinucci et al. Phys. Lett. A 242, 198 (1998).

$$\begin{split} \left|\Psi^{\text{in}}\right\rangle_{AB} &= \left|\psi_{0}\right\rangle_{A} \otimes \left|\psi_{0}\right\rangle_{B} = \frac{1}{1+\left|z\right|^{2}} \left(\left|00\right\rangle + z\left|01\right\rangle + z\left|10\right\rangle + z^{2}\left|11\right\rangle\right) \\ &U_{\text{CNOT}}\left|\Psi^{\text{in}}\right\rangle_{AB} = \frac{1}{1+\left|z\right|^{2}} \left(\left|00\right\rangle + z\left|01\right\rangle + z\left|11\right\rangle + z^{2}\left|10\right\rangle\right) \end{split}$$

H. Bechmann-Pasquinucci et al. Phys. Lett. A 242, 198 (1998).

$$\begin{split} \left|\Psi^{\text{in}}\right\rangle_{AB} &= \left|\psi_{0}\right\rangle_{A} \otimes \left|\psi_{0}\right\rangle_{B} = \frac{1}{1+\left|z\right|^{2}} \left(\left|00\right\rangle + z\left|01\right\rangle + z\left|10\right\rangle + z^{2}\left|11\right\rangle\right) \\ &U_{\text{CNOT}} \left|\Psi^{\text{in}}\right\rangle_{AB} = \frac{1}{1+\left|z\right|^{2}} \left(\left|00\right\rangle + z\left|01\right\rangle + z\left|11\right\rangle + z^{2}\left|10\right\rangle\right) \end{split}$$

after projecting qubit B to |0>:

$$|\psi_1\rangle_A = \frac{1}{\sqrt{1+|z|^2}} \left(|0\rangle + z^2 |1\rangle\right)$$

H. Bechmann-Pasquinucci et al. Phys. Lett. A 242, 198 (1998).

$$\begin{split} \left|\Psi^{\text{in}}\right\rangle_{AB} &= \left|\psi_{0}\right\rangle_{A} \otimes \left|\psi_{0}\right\rangle_{B} = \frac{1}{1+\left|z\right|^{2}} \left(\left|00\right\rangle + z\left|01\right\rangle + z\left|10\right\rangle + z^{2}\left|11\right\rangle\right) \\ &U_{\text{CNOT}}\left|\Psi^{\text{in}}\right\rangle_{AB} = \frac{1}{1+\left|z\right|^{2}} \left(\left|00\right\rangle + z\left|01\right\rangle + z\left|11\right\rangle + z^{2}\left|10\right\rangle\right) \end{split}$$

after projecting qubit B to |0>:

$$|\psi_1\rangle_A = \frac{1}{\sqrt{1+|z|^2}} \left(|0\rangle + z^2 |1\rangle\right) \longrightarrow f(z) = z^2$$

H. Bechmann-Pasquinucci et al. Phys. Lett. A 242, 198 (1998).

Iteration of $f(z) = z^2$ (complex plane)

- ▶ $|z| < 1 \rightarrow 0$ (stable fixed point)
- $|z| > 1 \rightarrow \infty$ (stable fixed point)
- ▶ $|z| = 1 \rightarrow$ no convergence

H. Bechmann-Pasquinucci et al. Phys. Lett. A 242, 198 (1998).

Iteration of $f(z) = z^2$ (Bloch sphere)

- |z| < 1 states converge to $|0\rangle$
- |z| > 1 states converge to $|1\rangle$

z = 1 weird points: the Julia set

Iterative nonlinear quantum protocols

- Ensemble of qubits in *pure state* $|\psi_0\rangle \sim |0\rangle + z |1\rangle$ $(z \in \mathbb{C})$
 - 1. Take them pairwise:

$$|\Psi_0\rangle = |\psi_0\rangle_A \otimes |\psi_0\rangle_B$$

- 2. Apply an entangling two-qubit operation U
- 3. Measure the state of qubit B keep A only for result 0
- Smaller ensemble in *pure state* $|\psi_1\rangle \sim |0\rangle + f(z)|1\rangle$
- Quantum magnification bound: exponential downscaling of the ensemble

$$U \leftrightarrow f(z) = \frac{a_0 z^2 + a_1 z + a_2}{b_0 z^2 + b_1 z + b_2}$$

A. Gilyén, T. Kiss and I. Jex, Sci. Rep. 6, 20076 (2016)

Historical remarks on complex dynamics

■ Iterated rational polynomials: $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}, f^{\circ n} \to ?$

One century of complex chaos:

1871 idea of iterated functions by Ernst Schröder

Ueber iterirte Functionen., Math. Ann.

1906 first weird example by P. Fatou: $z \mapsto z^2/(z^2 + 2)$ **1920ies** G. Julia, S. Lattès, & ...

1970ies Computers help visualize: Mandelbrot & ...

A good book:

J.W. Milnor Dynamics in One Complex Variable, (Vieweg, 2000)

Iterative dynamics - examples

CNOT gate plus a single qubit gate

$$U = \begin{pmatrix} \cos\theta & \sin\theta \ e^{i\varphi} \\ -\sin\theta \ e^{-i\varphi} & \cos\theta \end{pmatrix}$$

Family of maps over $\hat{\mathbb{C}}$:

$$z \mapsto f_p(z) = \frac{z^2 + p}{1 - p^* z^2}$$
 $p = \tan \theta e^{i\varphi}$

$p \in \mathbb{C}$ parameter of the gate

Iterative dynamics - Julia sets on the Bloch sphere

(a) $\theta = 0.4, \varphi = \frac{\pi}{2}$ (b) $\theta = 0.55, \varphi = \frac{\pi}{2}$ (c) $\theta = 0.633, \varphi = \frac{\pi}{2}$

(d) $\theta = 1.05, \varphi = \frac{\pi}{2}$ (e) $\theta = 0.5, \varphi = 0.5$

(f) $\theta = 0.232, \varphi = 0$

A. Gilyén, T. Kiss and I. Jex, Sci. Rep. 6, 20076 (2016).

Lattès map: $J = \hat{\mathbb{C}}$

$$f(z) = \frac{z^2 + i}{iz^2 + 1}, \quad p = i$$

A commutative diagram:

- ▶ map on the Bloch sphere $\leftrightarrow \times (1 i)^n$ on the torus
- all initial states are weird
- ergodicity

Lattès, S (1918), Les Comptes rendus de l'Académie des sciences, 166: 26-28 A. Gilyén, T. Kiss and I. Jex, Sci. Rep. **6**, 20076 (2016).

Lattès map: ergodic dynamics

(a) |z| > 1

(e) $|f^{\circ 4}(z)| > 1$

(i) $|f^{\circ 8}(z)| > 1$

(b) |f(z)| > 1

(f) $|f^{\circ 5}(z)| > 1$

(j) $|f^{\circ 9}(z)| > 1$

(c) $|f^{\circ 2}(z)| > 1$

(g) $|f^{\circ 6}(z)| > 1$

 $(k)|f^{\circ 10}(z)| > 1$

(d) $|f^{\circ 3}(z)| > 1$

(h) $|f^{\circ 7}(z)| > 1$

(I) $|f^{\circ 11}(z)| > 1$

Lattès map with noisy initial states

Dynamics represented by $\mathbb{R}^3 \to \mathbb{R}^3$ functions:

$$u' = \frac{u^2 - v^2}{1 + w^2}, \quad v' = \frac{2w}{1 + w^2}, \quad w' = -\frac{2uv}{1 + w^2}$$

No book by Milnor! :-(

Asymptotics: all mixed initial states \rightarrow completely mixed state

O. Kálmán, T. Kiss and I. Jex, J Russ Laser Res 39: 382 (2018)

CNOT + Hadamard gate: phase transition

Noisy (mixed) initial states:

$$\rho \xrightarrow{\mathcal{M}} \rho' = U_H \frac{\rho \odot \rho}{\operatorname{Tr}(\rho \odot \rho)} U_H^{\dagger}$$

where

$$U_{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \rho = \frac{1}{2} \begin{pmatrix} 1 + w & u - iv \\ u + iv & 1 - w \end{pmatrix}$$

Purity:
$$P = \text{Tr}(\rho^2) = (1 + u^2 + v^2 + w^2)/2 \le 1$$

Convergence for different purities *P*

P = 1 P = 0.87 P = 0.75

Fractal dimension *D*_{bc} as a function of purity *P*

M. Malachov, I. Jex, O. Kálmán, and T. Kiss, Chaos 29, 033107 (2019)

LOCC scheme with 2 qubits

 $|\psi\rangle = c_1|00\rangle + c_2|01\rangle + c_3|10\rangle + c_4|11\rangle$

 $|\psi'\rangle = U_H \otimes U_H \left[\mathcal{N}(c_1^2|00\rangle + c_2^2|01\rangle + c_3^2|10\rangle + c_4^2|11\rangle) \right]$

2 qubits: chaotic entanglement

Asymptotic states

Green: Fully entangled:

$$|\psi^{(\infty)}\rangle = \frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right)$$

Blue: Completely separable, oscillatory:

$$|\psi^{(\infty)}\rangle \rightarrow \left\{|00\rangle, \frac{1}{2}(|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)\right\}$$

T. Kiss, S. Vymětal, L. D. Tóth, A. Gábris, I. Jex, G. Alber, PRL **107**, 100501 (2011)

nonlinear transformation:

$$f_{\varphi=0} = \frac{2z}{1+z^2}$$

nonlinear transformation:

$$f_{\varphi=0} = \frac{2z}{1+z^2}$$

- two superattractive fixed points: 1 and -1
- Julia set: imaginary axis

J. M. Torres, J. Z. Bernád, G. Alber, O. Kálmán, and T. Kiss, Phys. Rev. A, 95, 023828 (2017)

nonlinear transformation:

$$f_{\varphi=0} = \frac{2z}{1+z^2}$$

J. M. Torres, J. Z. Bernád, G. Alber, O. Kálmán, and T. Kiss, Phys. Rev. A, 95, 023828 (2017)

nonlinear transformation:

$$f_{\varphi=0} = \frac{2z}{1+z^2}$$

From highly overlapping to almost orthogonal in only 3 steps

J. M. Torres, J. Z. Bernád, G. Alber, O. Kálmán, and T. Kiss, Phys. Rev. A, **95**, 023828 (2017)

Quantum state orthogonalization: experiment

G. Zhu, O. Kálmán, K. Wang, L. Xiao, X. Zhan, Z. Bian, T. Kiss, P. Xue, PRA, in press

Quantum state matching

- define a reference state: $|\psi_{\rm ref}\rangle$
- define a neighborhood: $\varepsilon = |\langle \psi | \psi_{ref} \rangle|$
- find which f corresponds to it
- ▶ find implementation of *f*
 - 2-qubit unitary+post-selection

Quantum state matching

- define a reference state: $|\psi_{\rm ref}\rangle$
- define a neighborhood: $\varepsilon = |\langle \psi | \psi_{ref} \rangle|$
- ► find which *f* corresponds to it
- ▶ find implementation of *f*
 - 2-qubit unitary+post-selection

O. Kálmán and T. Kiss, Phys. Rev. A 97, 032125 (2018)

Thank you for your attention!

